"Measuring Economic Development from Space with Machine Learning" - Stefano Ermon, Stanford University

2:00 pm - 3:00 pm
Online

This event is part of the AI for Social Impact Seminar Series hosted by Penn State's Center for Socially Responsible Artificial Intelligence.

Watch This Talk

“Measuring Economic Development from Space with Machine Learning”

Recent technological developments are creating new spatio-temporal data streams that contain a wealth of information relevant to climate adaptation strategies. Modern AI techniques have the potential to yield accurate, inexpensive, and highly scalable models to inform research and policy. A key challenge, however, is the lack of large quantities of labeled data that often characterize successful machine learning applications. In this talk, Dr. Ermon will present new approaches for learning useful spatio-temporal models in contexts where labeled training data is scarce or not available at all. He will show applications to predict and map poverty in developing countries, monitor agricultural productivity and food security outcomes, and map infrastructure access in Africa. These methods can reliably predict economic well-being using only high-resolution satellite imagery. Because images are passively collected in every corner of the world, these methods can provide timely and accurate measurements in a very scalable end economic way, and could significantly improve the effectiveness of climate adaptation efforts.

About the Speaker

Stefano Ermon is an assistant professor of Computer Science in the CS Department at Stanford University, where he is affiliated with the Artificial Intelligence Laboratory and is a fellow of the Woods Institute for the Environment. His research is centered on techniques for probabilistic modeling of data and is motivated by applications in the emerging field of computational sustainability. He has won several awards, including four Best Paper Awards (AAAI, UAI and CP), an NSF Career Award, ONR and AFOSR Young Investigator Awards, a Sony Faculty Innovation Award, a Hellman Faculty Fellowship, Microsoft Research Fellowship, Sloan Fellowship, and the IJCAI Computers and Thought Award. Stefano earned his Ph.D. in Computer Science from Cornell University in 2015.